

Satellite Images applications in natural resources Lunes 17 de Noviembre 2014

Building International Cooperation on Arid Zones Research

🚹 💽 🐖 🛛 www.inia.cl

Remote Sensing

Set of knowledge and techniques that are used to determine physical and biological characteristics of objects using measurements at a distance, without material contact.

Remote Sensing

Obtaining information about an object or a surface without coming into physical contact with it.

- Basis: Interpretation of emitted or reflected electromagnetic radiation from a surface
- Requires knowledge of the physics behind the interaction of radiation at certain wavelengths with a surface
- Sensors and instruments
- Active and Passive Systems (microwave)

Physical principles of remote sensing

The Electromagnetic Spectrum

Elements involved in Remote sensing

- 1. Energy Source or Illumination (A)
- 2. Radiation and the Atmosphere (B)
- 3. Interaction with the Object (C)
- 4. Recording of Energy by the Sensor (D)
- 5. Transmission, Reception and Processing (E)
- 6. Interpretation and Analysis (F)
- 7. Application (G)

Interactions with the Atmosphere

Particles and gases in the atmosphere can affect the incoming light and radiation

scattering

absorption

Sensor resolution

Spectral and spatial Resolution

RADIOMETRO AVHRR			RADIOMETRO ASTER			
Banda 1 2 3 4 5	Rango Espect (1 km) 0. (1 km) 0. (1 km) 3. (1 km) 10. (1 km) 11.	tral (μ m) 58 - 0.68 72 - 1.10 55 - 3.93 30 - 11.30 50 - 12.50	Banda 1 2 3 (N, B) 4 5 6	Rango (15 m) (15 m) (15 m) (30 m) (30 m)	Espectral (μ m) 0.52 - 0.60 0.63 - 0.69 0.78 - 0.86 1.600 - 1.700 2.145 - 2.185 2.185 - 2.225	VNIR
RADIOMETRO TM			7 8	(30 m) (30 m)	2.235 - 2.285 2.295 - 2.365	SWIR
Banda 1 2 3 4 5 6 7	Rango E (30m) 0. (30m) 0. (30m) 0. (30m) 0. (30m) 0. (30m) 1. (60m) 10. (30m) 2.	spectral (µm) 45 – 0.52 52 – 0.60 63 – 0.69 76 – 0.90 55 – 1.75 40 – 12.50 08 – 2.35	9 10 11 12 13 14	(30 m) (90 m) (90 m) (90 m) (90 m)	2.360 - 2.430 8.125 - 8.475 8.475 - 8.825 8.925 - 9.275 10.25 - 10.95 10.95 - 11.65	TIR

INIA ANOSINIA

Radiometric and temporal Resolution

Tipo de dato	Resolución radiométrica	Ejemplos de sensores remotos
8 bits	256	TM, MMRS, HRV.
10 bits	1024	AVHRR, SEAWIFS.
12 bits	4096	MODIS
16 bits	65536	ERS-1, ERS-2, RADARSAT, AVIRIS.

LANDSAT	16-18 Días
IKONOS	11 Días
NOAA	12 Horas
METEOSAT	30 Minutos

Satellite Images

Advantages

- Covers large areas
- Cost effective
- Time efficient
- Multi-temporal
- Multi-sensor
- Multi-spectral
- Overcomes inaccessibility
- Faster extraction of GISready data

Disadvantages

- Needs ground verification
- Doesn't offer details
- Not the best tool for small areas
- Needs expert system to extract data

Spectral signature

- The spectral signature, offers information about the surface that emits or reflects radiation.
- Every object that exists on Earth has its unique spectral signature or reflectance when exposed to light.
- The pattern of response spectral or spectral signature allows us to interpret the different States of an object.

Spectral signatures

Application of Remote sensing

Natural Resource Management

- Habitat analysis
- Environmental assessment
- Pest/disease outbreaks
- Impervious surface mapping
- Lake monitoring
- Hydrology
- Landuse-Landcover monitoring
- Mineral province
- Geomorphology
- Geology

- <u>Agriculture</u>
 - Crop health analysis
 - Precision agriculture
 - Yield estimation

0,9

0,8

1,0

IR

1,1 μm

0

0,4

0,5

C

0,7

Normalized Difference Vegetation Index (NDVI)

NDVI IN MAULE REGION

NIA 1964-2014

Vegetación Sana y Densa

-0,2 - 0

0-0,001

0,15 - 0,3

0,3-0,4 0,4 - 0,5 0,5 - 0,6 0,6-0,7

VISUAL COMPARISON

NDVI OCTAVA REGIÓN, 25 MAYO - 9 JUNIO

NDVI deviation (Ago 29-Sep 13 BIO BIO)

NDVI diference (Ago 29-Sep 13 BIO BIO)

Soil-adjusted Vegetation Index (SAVI)

In areas where vegetative cover is low (i.e., < 40%) and the soil surface is exposed, the reflectance of light in the red and near-infrared spectra can influence vegetation index values.

The SAVI is structured similar to the NDVI but with the addition of a "soil brightness correction factor.

$$SAVI = (1+L) \cdot \frac{\rho_{NIR} - \rho_{red}}{\rho_{NIR} + \rho_{red} + L}$$

L = 0.5

Seepage losses in irrigation canals

WORLDVIEW-2 : Multiespectral 4-bandas (RGB + NIR). PANCROMATICA : 0.5 m MULTIESPECTRAL 2.0 m

Land use clasification

Land use clasification

Thank you

