

Water resource monitoring, modeling, and information systems in China: Implications to water resource management in cold and dry regions

Di Long¹ and Yi Zheng²

1. Department of Hydraulic Engineering, Tsinghua University, China (dlong@tsinghua.edu.cn)

2. School of Environmental Science and Engineering, Southern University of Science and Technology, China (zhengy@sustc.edu.cn)

> CHILE-CHINA WORKSHOP ON RESEARCH ON WATER RESOURSES, Santiago, June 26–29, 2018

Background

- Ground monitoring networks in China
- Space monitoring of water resources in China
- Regional modeling and information systems: Cold regions
- Regional modeling and information systems: Arid regions

1. Background

Monitoring, modeling, and information systems

1. Background

A national water resource stereoscopic monitoring system

• A new system of national water resource stereoscopic monitoring

Geosynchronous Meteorological Satellites Stereoscopic: Ground, airborne and spaceborne Hydrological elements: P, ET, R, SW, SM, GW, etc. Satellite Mission 以GF、FY和HJ等国产卫星为支撑 辅以无人机、测量船、 GRACE 实现全国水资源要素的立体组1 ICESat GE HJ-1C FY-3 智能组网 H=f(T,D,S,A,R,...)协同临测 40. **K 上观**演 ŝ Opportunisti Citizen Scienc 20° ŝ 10° N z ° 80° F 90° F 120° F 110° F

Objectives: Based on the development of the global Earth observation system and the needs for water resource management, a new national water resource stereoscopic monitoring system is being developed

Background

- Ground monitoring networks in China
- Space monitoring of water resources in China
- Regional modeling and information systems: Cold regions
- Regional modeling and information systems: Arid regions

2. Ground monitoring networks in China

Streamflow gauges: 3283

Most of the data observed at these gauges can be obtained from Year Books

Data sources are from the Ministry of Water Resources in China

2. Ground monitoring networks in China

Basic meteorological stations: ~756

Data including precipitation, solar hour, air pressure, temperature, humidity, and wind velocity from these stations are publically accessible for research purposes

Data sources are from the China Meteorological Data Service Center

7

2. Ground monitoring networks in China

Basic meteorological stations: ~2477

Data are not publically available but may be obtained through scientific collaborations

Data sources are from the China Meteorological Data Service Center

Background

- Ground monitoring networks in China
- Space monitoring of water resources in China
- Regional modeling and information systems: Cold regions
- Regional modeling and information systems: Arid regions

HYC

Sur

International and China's satellite missions

Satellite observations provide important opportunity to monitor water resources in poorly gauged regions and large areas

ement

Application 1: Soil surface temperature and moisture

Two pilot agricultural districts, North China

Bai and *Long, in revision

11

Application 1: Soil surface temperature and moisture

Application 2: Groundwater monitoring using GRACE

GRACE can detect variations in the Earth's gravity field which reflects TWS changes

GRACE mission operated from Apr 2002–Jan 2017 GRACE Follow-On mission was launched in May 2018

The GRACE mission has two identical spacecrafts flying ~200 km apart in a polar orbit ~500 km above the Earth. The animations are from the US NASA website.

1. Background

Water storage changes across China (2002–2016)

Application 3: Atmospheric water vapor (AWV), precipitation (Prep) and precipitation efficiency (PE) across China (2007–2012)

15

Background

- Ground monitoring networks in China
- Space monitoring of water resources in China
- Regional modeling and information systems: Cold regions
- Regional modeling and information systems: Arid regions

Flowchart of the developed model: CREST-RS

Satellite altimetry (Jason 2)-based river water levels

Waveform retracking for reducing the impact of land contamination on signals of satellite radar altimetry

Snow water equivalent observations and modeling

Streamflow simulations using different precipitation

GMC dominates TWS changes (upper reach)

- Simulated TWS changes are consistent with GRACE-observed ones
- Compared with SWE, GMC shows more significant depletion, found to be the primary contributor of TWS depletion
- Depletion in glacier mass is mainly contributed by both rising temperatures and decreasing P

Snow and glacier melt flooding simulation and prediction

Snow and glacier meltwater contributes ~11% and ~10% to total runoff, respectively, for the Upper Brahmaputra River basin (above Nuxia gauging station)

aevelopea

- Climatology of runoff components for three scenarios :
 - (b1): Scenario (I)
 - (b2): Scenario (II)
 - (b3): Scenario (III)

Long-term trends in snow and glacier meltwater

Traditional calibration using Q only significantly overestimated glacier mass depletion (6.2 km³/a or 7.2 km³/a) for the Upper Brahmaputra River basin, relative to the newly estimated rate of 2 km³/a in our study

Background

- Ground monitoring networks in China
- Space monitoring of water resources in China
- Regional modeling and information systems: Cold regions
- Regional modeling and information systems: Arid regions

Heihe River basin in Northwest China

The 2nd largest inland river basin in China (~130,000 km²)
A steep mountain-oasis-desert ecological gradient, typical in western China

Heihe River basin in Northwest China

Water conflicts in the Heihe River basin

- From 1970's to 2000, excessive river flow diversion for irrigation in the middle HRB had caused vegetation degradation in the lower HRB and drying up of the terminal lake
- Two conflicts: Human vs. ecosystem, midstream vs. downstream

Rejuvenation of the East Juyan Lake

An integrated ecohydrological model for inland river basins

HEIFLOW–Hydrological-Ecological Integrated watershed-scale FLOW model

- Specifically designed for inland river basins with substantial surface watergroundwater interactions and agricultural irrigation
- Developed from GSFLOW (a USGS model)
- An advanced hydraulic module embedded, explicitly accounting for water diversion, pumping and irrigation
- Multiple eco-hydrological modules coupled

An integrated ecohydrological model for inland river basins

Modeling-based optimization of the conjunctive use of surface water and groundwater in the midstream

Temporal optimization

Analysis of the water-ecosystem-food (WEF) nexus in HRB

Coevolution of the groundwater storage, food production and ecosystem health in different management regimes

Identification of the "tipping point" for the ecological flow regulation

Visual HEIFLOW (VHF)

- A comprehensive system for supporting integrated watershed management in arid inland regions
- Originally designed for HEIFLOW, but can be easily extended to accommodate other integrated models
- It streamlines the entire modeling procedure, from data preparation to visualization and analysis of modeling results, in a uniform environment.

Tian and *Zheng et al., in revision

Some key tools in Visual HEIFLOW

3D view tool

ODM database manager

port to:	Variables	- X	· 🛗 🕼 👌	3 E				(1
Databa	se External Da	ata						
	VariableID	VariableCode	VariableName	Specification	ValueType	DataType	SampleMedium	TimeUni
	47	WREIS47	SR reflected-Month	Not Applicable	Field Observati	Average	Air	106
	48	WREIS48	SR,vertical direct-Month	Not Applicable	Field Observati	Average	Air	105
	49	WREIS49	SR,scattering-Month	Not Applicable	Field Observati	Average	Air	106
	50	WREIS50	SR,horizontal direct-Month	Not Applicable	Field Observati	Average	Air	106
	51	WREIS51	Groundwater level per month	Not Applicable	Field Observati	Average	Ground Water	52
	52	WREIS52	Yealy Stream Diversion Flow	Not Applicable	Field Observati	Average	Surface Water	107
•	53	WREIS53	Yealy Pumping	Not Applicable	Field Observati	Average	Ground Water	107
	54	WREIS54	Yearly Net Irrigation Water	Not Applicable	Field Observati	Average	Surface Water	107
	55	WREIS55	Yearly Irrigation Aera	Not Applicable	Field Observati	Average	Earth Surface	107
1 8	56	WREIS56	Monthly Stream Diversion Flow	Not Applicable	Field Observati	Average	Surface Water	106
	57	WREIS57	Monthly Pumping	Not Applicable	Field Observati	Average	Ground Water	106
	58	WREIS58	Monthly Net Irrigation Water	Not Applicable	Field Observati	Average	Surface Water	106
	59	WREIS56	Daily Stream Diversion Flow	Not Applicable	Field Observati	Average	Surface Water	104
	60	WREIS57	Water level	Not Applicable	Field Observati	Average	Surface Water	104
	61	WREIS58	Evaportranspiration	Not Applicable	Remote Sensing	Average	Earth Surface	104
	62	WREIS59	Air Temperature	Not Applicable	Field Observati	Average	Air	104
	63	WREIS59	Water Temperature	Not Applicable	Field Observati	Average	Surface Water	104
	64	WREIS55	Electronic Conductivity	Not Applicable	Field Observati	Average	Surface Water	107
	65	WREISSS	Groundwater level per five days	Not Applicable	Field Observati	Average	Ground Water	52
	66	WREIS66	Groundwater level per day	Not Applicable	Field Observati	Average	Ground Water	52
	67	WREIS67	Groundwater Temperature	Not Applicable	Field Observati	Average	Ground Water	52
+								

Visualization

Hydrogeological features

Topography and river network

Supporting management

The budget analysis tool computes the water balance for pre-specified periods.
The graphical presentation helps the user easily understand the complicated hydrological processes and compare different management scenarios.

Concluding remarks

- We call for enhancing ground monitoring of water resources and developing a transparent data sharing mechanism in China
- Satellite observations of the hydrological cycle (i.e., soil moisture, groundwater, atmospheric water vapor) play an increasingly important role in water resource monitoring and management (e.g., at a spatial resolution of 30 m by 30 m)
- Satellite observations provide critical information on hydrological modeling in poorly gauged cryospheric regions, highly valuable for snow and ice melt and flooding monitoring and prediction, and understanding impacts of climate change on water resources
- An integrated ecohydrological model (HEIFLOW) and an information system (Visual HEIFLOW) have been developed in the arid Heihe River basin, which greatly helps improve our understanding of hydrological and ecological processes, and facilitates decision making for water allocation in arid regions in China

Acknowledgments

Funding from two major research plans: (1) Runoff Changes and Its adaptive utilization in Southwest China (2015–the present), and (2) Integrated Research on the Eco-hydrological Process of the Heihe River Basin (2011–2018), National Natural Science Foundation of China

