Water resource monitoring, modeling, and information systems in China: Implications to water resource management in cold and dry regions

Di Long¹ and Yi Zheng²

1. Department of Hydraulic Engineering, Tsinghua University, China (dlong@tsinghua.edu.cn)

2. School of Environmental Science and Engineering, Southern University of Science and Technology, China (zhengy@sustc.edu.cn)

CHILE-CHINA WORKSHOP ON RESEARCH ON WATER RESOURCES, Santiago, June 26–29, 2018
Background

Ground monitoring networks in China

Space monitoring of water resources in China

Regional modeling and information systems: Cold regions

Regional modeling and information systems: Arid regions
1. Background

Monitoring, modeling, and information systems
A national water resource stereoscopic monitoring system

1. Background

A new system of national water resource stereoscopic monitoring

- **Stereoscopic**: Ground, airborne and spaceborne
- **Hydrological elements**: P, ET, R, SW, SM, GW, etc.

Objectives: Based on the development of the global Earth observation system and the needs for water resource management, a new national water resource stereoscopic monitoring system is being developed.
Background

- Ground monitoring networks in China
- Space monitoring of water resources in China
- Regional modeling and information systems: Cold regions
- Regional modeling and information systems: Arid regions
2. Ground monitoring networks in China

Streamflow gauges: 3283

Most of the data observed at these gauges can be obtained from Year Books

Data sources are from the Ministry of Water Resources in China
2. Ground monitoring networks in China

Basic meteorological stations: ~756

Data sources are from the China Meteorological Data Service Center

Data including precipitation, solar hour, air pressure, temperature, humidity, and wind velocity from these stations are publically accessible for research purposes.

Data sources are from the China Meteorological Data Service Center
Basic meteorological stations: ~2477

Data are not publically available but may be obtained through scientific collaborations

Data sources are from the China Meteorological Data Service Center
Background

Ground monitoring networks in China

Space monitoring of water resources in China

Regional modeling and information systems: Cold regions

Regional modeling and information systems: Arid regions
Satellite observations provide important opportunity to monitor water resources in **poorly gauged regions and large areas**.
Application 1: Soil surface temperature and moisture

Area 1
- Hetao Irrigation District with heterogeneous agriculture lands
- Main crops: Spring wheat, spring maize, and sunflower
- Irrigation water: Depending

Remote sensing of soil moisture at **30 m spatial resolution** is critical for heterogeneous agricultural land in North China

Area 2
- South of Hebei Province in the NCP with homogeneous agricultural land
- Main crops: Winter wheat-summer maize rotation system
- Irrigation water: Depending mostly on groundwater

Two pilot agricultural districts, North China

Bai and *Long, in revision
3. Space monitoring of water resources in China

Application 1: Soil surface temperature and moisture

Input data
- Landsat 7, 8, and MODIS

HUT and ESTARFM models

Output data
- 30 m LST

1 km MODIS
30-100 m Landsat

- Spatial downscaling and data fusion

RMSE of surface soil temperature estimates: 0.73 K–2.75 K
RMSE of SSM estimates: 0.038 cm³/cm³ for Area 1 and 0.043 cm³/cm³ for Area 2

30 m LST
LST and vegetation index based
30 m SSM
3. Space monitoring of water resources in China

Application 2: Groundwater monitoring using GRACE

GRACE can detect variations in the Earth’s gravity field which reflects TWS changes.

The GRACE mission has two identical spacecrafts flying ~200 km apart in a polar orbit ~500 km above the Earth. The animations are from the US NASA website.

GRACE mission operated from Apr 2002–Jan 2017
GRACE Follow-On mission was launched in May 2018
1. Background

Water storage changes across China (2002–2016)

North China Plain (~22 mm/a or 8.3 km³/a)
Feng et al. [2012], WRR; Pan et al. [2017], GRL

Three Gorges Reservoir and the Yangtze River basin
Wang et al. [2011], WRR; Long et al. [2015], RSE

Upper Mekong River and Xijiang River in Southwest China
Long et al. [2014], RSE

Tien Shan Mountains (27% decrease over the last 50 years)
Farinotti et al. [2015], Nature Geosci.

Upper Brahmaputra (~10 mm/a or ~2.5 km³/a)
Long et al. [2017], RSE
Chen and *Long et al. [2017], WRR
3. Space monitoring of water resources in China

Application 3: Atmospheric water vapor (AWV), precipitation (Prep) and precipitation efficiency (PE) across China (2007–2012)

Aqua AIRS AWV 1° mm GSMaP Prep 0.1° mm

Li and *Long, in preparation
Background

Ground monitoring networks in China

Space monitoring of water resources in China

Regional modeling and information systems: Cold regions

Regional modeling and information systems: Arid regions
4. Regional modeling and information systems: Cold regions

Flowchart of the developed model: CREST-RS

- **RS I**: Satellite-based precipitation
- **RS II**: Thermal infrared LST
- **RS III**: Optical RS-based SCA and passive microwave RS-based snow depth
- **RS IV**: GRACE-derived total water storage changes
- **RS V**: Satellite altimetry-based water levels

Chen and *Long et al., 2017, WRR
Long et al., 2018, under review
4. Regional modeling and information systems: Cold regions

Satellite altimetry (Jason 2)-based river water levels

Waveform retracking for reducing the impact of land contamination on signals of satellite radar altimetry

Huang and Long et al., 2018, RSE
4. Regional modeling and information systems: Cold regions

Snow water equivalent observations and modeling

(a) Upper reach

(b) NSE=0.64 CC=0.82 Bias=1.03%
NSE=0.75 CC=0.88 Bias=-11.05%

(c) Middle reach

(d) NSE=0.78 CC=0.89 Bias=0.004%
NSE=0.78 CC=0.89 Bias=0.18%

Observed
Simulated

Calibration
Validation
Observations
4. Regional modeling and information systems: Cold regions

Streamflow simulations using different precipitation forcings:

- **CGDPA** (Satellite)
- **TMPA** (Satellite)
- **MP** (Merged in our study)

Performance:
- **Calibration:** $\text{Obj}_Q = 0.79$
- **Validation:** $\text{Obj}_Q = 0.85$

Global Satellite Mapping of Precipitation (GSMaP) can be a better product in this high mountain region!
GMC dominates TWS changes (upper reach)

- Simulated TWS changes are consistent with GRACE-observed ones.
- Compared with SWE, GMC shows more significant depletion, found to be the primary contributor of TWS depletion.
- Depletion in glacier mass is mainly contributed by both rising temperatures and decreasing P.
Snow and glacier meltwater contributes ~11% and ~10% to total runoff, respectively, for the Upper Brahmaputra River basin (above Nuxia gauging station)

- Snowmelt runoff and glacier runoff under:
 - **Scenario (I)**: CGDPA P+Q calibration
 - **Scenario (II)**: Merged P+Q calibration
 - **Scenario (III)**: Merged P + improved calibration

- Climatology of runoff components for three scenarios:
 - (b1): **Scenario (I)**
 - (b2): **Scenario (II)**
 - (b3): **Scenario (III)**
4. Regional modeling and information systems: Cold regions

Long-term trends in snow and glacier meltwater

(a) GRACE-derived TWS changes and simulated TWS changes under scenarios (I) – (III)

(b) Glacier mass changes under scenarios (I) – (III) and their linear trends

Traditional calibration using Q only significantly overestimated glacier mass depletion (6.2 km\(^3\)/a or 7.2 km\(^3\)/a) for the Upper Brahmaputra River basin, relative to the newly estimated rate of 2 km\(^3\)/a in our study.
Background

Ground monitoring networks in China

Space monitoring of water resources in China

Regional modeling and information systems: Cold regions

Regional modeling and information systems: Arid regions
5. Regional modeling and information systems: Arid regions

Heihe River basin in Northwest China

- The 2nd largest inland river basin in China (~130,000 km²)
- A steep mountain-oasis-desert ecological gradient, typical in western China

Steep ecological gradient

Yingluoxia: Upstream-midstream dividing point
Zhengyixia: Midstream-downstream dividing point

Downstream: desert
Midstream: oasis
Upstream: mountain
Heihe River basin in Northwest China

Upstream: Qilian Mountains

Midstream: Zhangye Basin

Downstream: Ejina Basin

Terminal Lake: East Juyan Lake
From 1970’s to 2000, excessive river flow diversion for irrigation in the middle HRB had caused vegetation degradation in the lower HRB and drying up of the terminal lake.

Two conflicts: Human vs. ecosystem, midstream vs. downstream.

Remote sensing images of the East Juyan Lake.
5. Regional modeling and information systems: Arid regions

Rejuvenation of the East Juyan Lake

- Since 2000, a water allocation plan has been enforced by the central government to protect the ecological flow towards the downstream area.

Flow to the lower Gobi area

Inflow from the upper mountain area

Water allocation curve (WAC)

Actual cond. in 2000-2008

Lake areas interpreted from remote sensing images

Photos taken in Sep 2016
An integrated ecohydrological model for inland river basins

Concept

Natural processes
Vegetation
Surface water
Groundwater

Human activities
Flow diversion
Groundwater pumping
Irrigation

An integrated model is also a platform to fuse multi-source data

Tian and *Zheng et al., 2015, *WRR*
HEIFLOW—Hydrological-Ecological Integrated watershed-scale FLOW model

- Specifically designed for inland river basins with substantial surface water-groundwater interactions and agricultural irrigation
- Developed from GSFLOW (a USGS model)
- An advanced hydraulic module embedded, explicitly accounting for water diversion, pumping and irrigation
- Multiple eco-hydrological modules coupled

Tian and *Zheng et al., 2015, EMS
5. Regional modeling and information systems: Arid regions

An integrated ecohydrological model for inland river basins

- Modeling-based **optimization** of the conjunctive use of surface water and groundwater in the midstream

![Spatial optimization diagram](image)

Temporal optimization

Changes of surface water ratio

- Use more groundwater in the dry season
- Groundwater reservoir!
- Use more surface water during the flood season

*Wu and *Zheng et al., 2015, *WRR*
*Wu and *Zheng et al., 2016, *AWM*
Analysis of the water-ecosystem-food (WEF) nexus in HRB

Coevolution of the groundwater storage, food production and ecosystem health in different management regimes

Identification of the “tipping point” for the ecological flow regulation

Sun and *Zheng et al., under review
Visual HEIFLOW (VHF)

- A comprehensive system for supporting integrated watershed management in arid inland regions
- Originally designed for HEIFLOW, but can be easily extended to accommodate other integrated models
- It streamlines the entire modeling procedure, from data preparation to visualization and analysis of modeling results, in a uniform environment.

Tian and *Zheng et al., in revision
5. Regional modeling and information systems: Arid regions

Some key tools in Visual HEIFLOW

- **3D view tool**
- **ODM database manager**
- **Spatial toolbox**
- **Model toolbox**
5. Regional modeling and information systems: Arid regions

Visualization

Hydrogeological features

Topography and river network

Leaf Area Index Evapotranspiration GW recharge GWS
The budget analysis tool computes the water balance for pre-specified periods.

The graphical presentation helps the user easily understand the complicated hydrological processes and compare different management scenarios.
Concluding remarks

- We call for **enhancing ground monitoring** of water resources and developing a transparent data sharing mechanism in China.

- **Satellite observations** of the hydrological cycle (i.e., soil moisture, groundwater, atmospheric water vapor) play an increasingly important role in water resource monitoring and management (e.g., at a spatial resolution of 30 m by 30 m).

- Satellite observations provide **critical information** on hydrological modeling in poorly gauged cryospheric regions, highly valuable for snow and ice melt and flooding monitoring and prediction, and understanding impacts of climate change on water resources.

- An integrated ecohydrological model (**HEIFLOW**) and an information system (**Visual HEIFLOW**) have been developed in the arid Heihe River basin, which greatly helps improve our understanding of hydrological and ecological processes, and facilitates decision making for water allocation in arid regions in China.
Acknowledgments

Funding from **two major research plans:** (1) Runoff Changes and Its adaptive utilization in Southwest China (2015–the present), and (2) Integrated Research on the Eco-hydrological Process of the Heihe River Basin (2011–2018), National Natural Science Foundation of China.