

ESTUDIOS GENÉTICOS EN Lithodes santolla

TRANSFORMANDO CONOCIMIENTO EN SOLUCIONES BIOTECNOLÓGICAS PARA LA PESQUERÍA DE CENTOLLA

PROYECTO:

"ESTUDIO COMBINADO DE VARIABILIDAD GENÉTICA Y MORFOLÓGICA DE LA CENTOLLA (*Lithodes santolla*) EN LA REGIÓN DE MAGALLANES Y ANTÁRTICA CHILENA:

HERRAMIENTAS PARA EL MANEJO, SUSTENTABILIDAD Y PLUSVALÍA COMERCIAL DEL RECURSO" CÓDIGO 12BPC2-13541

Proyecto apoyado por

gob.c

Pesca en la Región XII

GENERAR UNA PLATAFORMA GENÓMICA Y TRANSCRIPTÓMICA DEL RECURSO CENTOLLA

- Desarrollar MARCADORES MOLECULARES específicos de la especie.
- Caracterizar GENÉTICAMENTE el recurso en toda la Región de Magallanes y Antártica chilena.
- Obtener conocimiento sobre el proceso reproductivo a nivel celular, bioquímico y molecular.

3 campañas de muestreo, a bordo de embarcación centollera 2012, 2013, 2014

www.cequa.cl

69 sitios de muestreo

1400 organismos (10-15 organismos por sitio)

1,011 Machos y 389 Hembras

Toma de muestras: Análisis histológicos-trascriptómicos: reproductivos.

Muestra de hemolinfa para análisis bioquímicos

Muestra de tejido para análisis bioquímicos

Muestra de tejido RNA-later para análisis moleculares

Muestra de tejido para análisis histológico Sol. Davidson

ESTRATÉGIA METODOLÓGICA

Herramientas Bioinformáticas

MITOS (Anotación de genes)

BLAST (Identificación Genbank)

DOGMA Definición de tRNAs genes

OGDRAW versión 1.1 Conformación del genoma

Diseño "Primers" específicos a partir del genoma de *L. santolla*

Microsatélites y Mitocondriales

PLATAFORMA GENÓMICA DE L. santolla

Histología e Histoquímica - análisis cualitativos y cuantitativos

Reservas energéticas

% de lípidos y carbohidratos en los principales tejidos relacionados con la reproducción: Génada

Índices morfo-fisiológicos

Área de Cobertura Gonádica vs Área de Cobertura Somática

Frecuencia de categorías ovocitarias

Número de ovocitos por unidad de área (µm²): Prevelogénicos Vitelogénicos Posetelogénicos Atréficos

Indicadores de calidad ovocitaria

Morfo-métricos:

- Área total (µm²)
- Dametro teórico (µm)
- Reación Núcleo/ Citoplasma (%)
- Ínfice de forma (%)
- Bio-energéticos:
 - Ínface de Lípidos (%)
 - Índice de Carbohidratos (%)

Bioquímica Proximal

Ovario, Hepatopáncreas, Hemolinfa: Estadios de madurez gonádica

Obtención de extractos

- 灰 Pesado
- 캳 Liofilizado
- 🖉 Rehidratación
- nteritado de las muestras en agua destilada

Cuantificación total por colorimetría

Colorimetría en microplacas ELISA de acuerdo al tipo de sustrato energético en espectrofotómetro *Multiskan Spectrum*®

Sustratos energéticos

- 🕟 Lípidos totales:
 - 🥟 Colesterol
 - 🖻 Triglicéridos
- Carbohidratos totales:
 - Glucógeno
 - Proteínas totales

- $\rightarrow Sulfo-Fosfato Vainillina (Barnes & Blackstock, 1973)$ $\rightarrow GPO-Trinder®$
- \rightarrow CHOD-PAP®
- → Ácido Tricloroacético (Roe *et al.,* 1961)

Antrona (Osterberg, 1929)

Ácido Biciconínico (BCA) (Mallia *et al.,* 1985).

Secuenciación Masiva del Transcriptóma de ovario (RNA-seq)

Ensamblaje de novo del transcriptoma

Carencia de transcriptoma de referencia obligó al ensamblaje de *novo* del transcriptóma de *L. santolla*

Anotación del Transcriptóma

Las secuencias de los transcritos fueron importadas a Trinotate y se les identificó homología

RESULTADOS

Genoma mitocondrial completo de centolla (Lithodes santolla)

Se identificaron un total de 13 genes codificantes

4 Ribosomales: 16S rRNA ; 12S rRNA, 18S rRNA, 28S rRNA

16 tRNA de los 22 reportados en Cangrejo Rey de Alaska (Kim et al. 2013).

Al Igual que en casi todos los genomas mitocondriales de los **crustáceos los marcos de lectura de las regiones codificantes se ven interrumpidos por codones de paro,** pero esta parece ser una característica conservada en todos ellos (Kim et al. 2013).

Mitochodrial Genome

Para validar el Genoma *Mitocondrial de L.santolla* se realizó un análisis filogenético comparativo.

Secuencias conservadas de *L. santolla* Especie-específicas

Paralithodes camtschaticus.

TrazaSantolla Chip (microarreglo de alta densidad) Aplicaciones en la pesquería de CENTOLLA: Fiscalización

Identificación específica y rápida de la centolla

Esta tecnología es aplicable en cualquier etapa del desarrollo de centolla, desde huevo a adulto.

El primer código de barras de la vida (del recurso centolla)

Se basa en la identificación de una **región de ADN** de la centolla que sirve como una etiqueta para la identificación rápida **de la especie**. El propósito de este sistema de identificación es facilitar la conservación, conocimiento y uso sustentable del recurso centolla.

Astrantes fulgerator CELT
Astraptes fulgerator TRIGO
Bubo virginianus
Tyto alba

GEN	PRIMER	SECUENCIA DEL PRIMER	ТМ	GC%	PB	PF
COI-I	Forward	GCTCCAGATATAGCCTTTCCA	62.0	47.6	21	1067
	Reverse	GGATAATCAGAATACCGACGAG	61.3	45.5	22	
COI-II	Forward	GGCTTCTCCCCTAATAGAAC	58.3	50.0	20	581
	Reverse	ACCTATGATTTGCCCCAC	59.8	50.0	18	
COI-III	Forward	CCCTGACCTTTAACTGGCTCT	63.4	52.4	18	669
	Reverse	GCAGCAGCTTCAAATCCA	62.8	50.0	20	
NADH-1	Forward	CAGCCTTTTTCTGACGCAGT	64.4	50.0	20	473
	Reverse	TCTCCCTCAGCAAAATCAAAA	63.5	38.1	21	
NADH-3	Forward	GCTCTTCTGTACCTTTCTTAC	54.0	42.9.0	21	333
	Reverse	CACTCTAAAGCACCTTGC	56.0	50.0	18	
18 S	Forward	GTGAAACCGCGAATGGCTC	59.5	57.89	19	1390
	Reverse	ATCTCGTGCGGCTAGAGTTG	60.5	55.0	20	
285	Forward	CGGGTGGAACTCGTAGATCG	62.5	60.0	20	1378
	Reverse	TGTCTGTGGTGCCCTTTGTT	58.4	50.0	20	
16S	Forward	AGAAACCAACCTGGCTCA	57.3	52.63	18	538
	Reverse	AGTTTGGCCTGCTCACTG	57.3	52.63	18	
12S	Forward	CCGATACATCTACCTTTGTTAC	58.4	40.91	21	552
	Reverse	CAGTCGCGGTTATACTTAAAG	57.4	42.86	20	
Región	Forward	CACGGCCTGTAGAAGAACT	60.5	55.0	20	1328
control	Reverse	CCACGACTTCGTTATGATAAGC	60.3	45.45	22	
L CUATERNARIO GO • PATAGONIA	Centro	de Estudios del Cuaternario Fuego Patagonia	NOK.		K.	2

FUE

Microsatélites

Locus	Alelos Nulos	Dempster et al. 1977
Lsa01	No	0.0103
Lsa08	No	0.0000
Lsa10	No	0.0322
Lsa11	No	0.0072
Lsa13	No	0.0001
Lsa14	No	0.0897

% DE ÉXITO = 97.5

GENEMAPPER V 4.1 (Applied Biosystems[®]).

CARACTERIZACIÓN GENÉTICA:

≻Localidades (Sitios muestreo)

≻12 Zonas

➤3 Macro-zonas:

Norte Centro Sur

Diversidad genética

							ZONAS					1	
GEN		1	2	3	4	5	6	8	9	10	11	12	Prom.
	Nh	27	12	3	6	8	12	20	22	12	12	22	
COI I (839 pb)	Hd	0.898	0.830	0.589	0.402	0.431	0.721	0.899	0.802	0.898	0.873	0.830	0.743
(000 p.0)	П	0.020	0.020	0.011	0.011	0.010	0.013	0.017	0.013	0.012	0.010	0.016	0.013
	Nh	12	3	2	6	4	9	12	10	9	8	12	
16S (459 pb)	Hd	0.446	0.470	0.348	0.313	0.337	0.438	0.426	0.468	0.434	0.437	0.448	0.415
	П	0.014	0.012	0.010	0.010	0.011	0.013	0.014	0.014	0.014	0.013	0.014	0.012
	Nh	20	11	2	5	3	2	20	18	11	11	18	
12S (555 pb)	Hd	0.508	0.637	0.319	0.337	0.287	0.409	0.777	0.748	0.596	0.586	0.713	0.537
	П	0.015	0.015	0.010	0.011	0.010	0.014	0.014	0.015	0.014	0.014	0.014	0.013
	Nh	29	8	3	12	9	22	22	21	22	17	22	
Región control (608 pb)	Hd	0.999	0.999	0	0.996	0	0.972	0.998	0.982	0.982	0.998	0.986	0.810
	П	0.018	0.012	0.010	0.010	0.010	0.011	0.014	0.018	0.014	0.018	0.017	0.013
	Nh	24	9	2	10	11	10	14	18	17	14	20	
COI II (545 pb)	Hd	0.877	0.695	0.466	0.483	0.447	0.618	0.842	0.817	0.864	0.845	0.881	0.730
(545 pb)	П	0.018	0.012	0.010	0.010	0.010	0.013	0.017	0.018	0.013	0.013	0.016	0.013

LABORATORIOS NATURALES DE MAGALLANES Y ANTÁRTICA CHILENA.

Diversidad genética

WWW	w cea	ua d
	witty	uu .ci

							ZONAS						
GEN		1	2	3	4	5	6	8	9	10	11	12	Prom.
	Nh	27	12	2	7	6	15	20	17	17	8	22	
COI III (616 pb)	Hd	0.919	0.961	0.234	0.325	0.348	0.898	0.881	0.765	0.871	0.894	0.884	0.725
	π	0.018	0.013	0.010	0.010	0.010	0.011	0.014	0.014	0.015	0.018	0.018	0.013
	Nh	10	8	2	2	2	10	9	9	9	8	8	
NADH-1 (291 pb)	Hd	0.908	0.837	0.446	0.637	0.617	0.709	0.861	0.748	0.996	0.886	0.913	0.721
	π	0.017	0.014	0010	0.010	0.010	0.010	0.016	0.017	0.014	0.013	0.016	0.013
	Nh	18	8	3	7	11	7	12	12	10	9	17	
NADH-3 (442 pb)	Hd	0.921	0.838	0.321	0.338	0.235	0.696	0.649	0.859	0.671	0.686	0.786	0.636
	π	0.019	0.011	0.011	0.014	0.012	0.012	0.013	0.013	0.012	0.013	0.013	0.013
	Nh	24	9	2	9	6	7	17	16	15	10	20	
18S (442 pb)	Hd	0.998	0.914	0.221	0.205	0.254	0.987	0.757	0.986	0.974	0.880	0.775	0.703
	π	0.016	0.011	0.010	0.010	0.011	0.016	0.016	0.016	0.014	0.0114	0.016	0.013

www.cequa.cl

ARGENTINA

Zop

ma 90

Océano Atlántico

	Índices de diversidad genética									
	Hd	π	Hd	π	Hd	π				
Gen	Zona (1 y	Norte / 2)	Zona (3	Centro -6)	Zona Sur (8-12)					
COLI	0.864	0.020	0.535	0.011	0.860	0.013				
16S	0.446	0.013	0.359	0.011	0.442	0.014				
12S	0.572	0.015	0.338	0.011	0.684	0.014				
Región control	0.999	0.015	0.492	0.010	0.989	0.016				
COI II	0.786	0.015	0.503	0.010	0.853	0.015				
COI III	0.940	0.015	0.451	0.010	0.859	0.015				
NADH-1	0.872	0.015	0.602	0.010	0.880	0.015				
NADH-3	0.879	0.015	0.397	0.012	0.730	0.013				
18S	0.956	0.013	0.416	0.011	0.874	0.016				

600.000

O Zona 2

Zona 4 Zona 3

Zona 11

Zona 10

o Boolooo Centroides zonas — Zonas de extracción

Variabilidad genética multilocus por macrozona (Norte, Centro y Sur). Estimada mediante 6 loci microsatélites de *Lithodes santolla*.

Zona 11 = islas y canales entre la costa sur de la península Brunswick, seno Agostini. Las localidades presentes destacan Capitán Aracena, B. Kempe

Estimación de diferenciación genética poblacional (F_{st})

Matriz pareada con Índices de fijación *φst concatenada* de 4 genes mitocondriales (COI-I, COI-II, 16S rRNA y Región control).

CERUA CENTRO DE ESTUDIO DEL CUATERNARIO FUEGO • PATAGONIA Y ANTÁRTICA

Marcadores Microsatélites

Estimación de diferenciación genética poblacional (F_{ST})

Los valores del estadístico $F_{s\tau}$ pareados para todos los sitios de muestreo variaron desde 0 hasta un máximo de 0.029. El 100% de las comparaciones tuvieron valores de diferenciación genética bajos (\leq 0.05) según los rangos propuestos por Freeland (2005b).

	I.Sal	P.Ca	I.Av	I.OtN	I.OtO	I.Co	I.Wi	P.Prof	I.Za	E.Po	P.Pa	I.RT	SeNe	C.Ma	B.Mu	SeBa
I.Sal																
P.Ca	0.019															
l.Av	0.004	0.029														
I.OtN	0.000	0.024	0.000													
I.OtO	0.000	0.010	0.000	0.000												
I.Co	0.004	0.000	0.013	0.008	0.000											
I.Wi	0.018	0.004	0.019	0.010	0.004	0.000										
P.Prof	0.000	0.021	0.005	0.000	0.000	0.030	0.003									
I.Za	0.009	0.004	0.008	0.001	0.002	0.000	0.000	0.000								
E.Po	0.000	0.016	0.008	0.002	0.000	0.005	0.000	0.000	0.001							
P.Pa	0.014	0.017	0.001	0.010	0.007	0.000	0.010	0.029	0.004	0.011						
I.RT	0.001	0.003	0.011	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.006					
SeNe	0.009	0.000	0.013	0.009	0.000	0.000	0.000	0.009	0.006	0.010	0.007	0.000				
C.Ma	0.002	0.007	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.008	0.000	0.000			
B.Mu	0.000	0.010	0.004	0.000	0.000	0.008	0.002	0.000	0.000	0.000	0.008	0.000	0.006	0.000		
SeBa	0.000	0.000	0.009	0.005	0.000	0.000	0.011	0.012	0.005	0.000	0.005	0.000	0.000	0.001	0.000	

www.cequa.cl

Existe flujo génico (obtenido con microsatélites)

0-I

IV

Caracterización histoquímica del ovario de L. santolla

Previtelogénesis

Vitelogénesis

Madurez

Desove

Tinción Sudan B

Bioquímica Proximal

Análisis de reservas en ovario y hepatopáncreas

Bioquímica Proximal

Triglicéridos

Indicador cuantitativo del grado de madurez y Potencial reproductivo de cada hembra

		Oocyte types mean	diameters and areas		Derived traits	
Variables	Chromatin nucleolus type (1)	Early nucleolus type (2)	Late nucleolus type (3)	Oil globule stage I type (4)	Female Value from:	Traits
Numbers of oocyte type (n _i)	n_1	n ₂	n ₃	n_4	$\Sigma^{i=1\ldots 4}\;n_i$	Total number of oocytes
Previtellogenic oocytes	n_1	n ₂	n ₃	-	$\Sigma^{i=1\dots 3} \; n_i$	Numbers of previtellogenic oocytes
Vitellogenic oocytes	-	-	-	n_4	n_4	Numbers of vitellogenic oocytes
Mean oocyte type diameter (µm) (D _i)	$(\Sigma^{i=1n1}D)/n_1$	$(\Sigma^{i=1 \ldots n2} D) / n_2$	$(\Sigma^{i=1 \ldots n 3} D) / n_3$	$(\Sigma^{i=1 \ldots n 4} D) / n_4$	$\frac{\Sigma^{i=1\ldots 4}\left(n_{i} \; x \; D_{i} \;\right) \; / }{n_{1} + n_{2} + n_{3} + n_{4}}$	Oocytes mean diameter (OD)
Oocyte type area $(\mu m^2) (A_i)$	$\Sigma^{i=1\dots n1}\;A$	$\Sigma^{i=1\dots n2} \; A$	$\Sigma^{i=1\dots n3}\;A$	$\Sigma^{i=1\dots n4} \: A$	$\Sigma^{i=1\dots 4}$ (n _i x A i)	Ovary maturity (OM)

Indicadores de calidad ovocitaria

Esfuerzo conjunto (IFOP/SUBPESCA/CEQUA)

\$ GENERAR MODELOS CON LOS COMPONENTES:

- ✓ Dinámica poblacional,
- Diversidad genética,
- ✓ Características reproductivas.

www.cequa.cl

Introducir a los modelos de DINÁMICA POBLACIONAL

Forthcoming: American Economic Review

Valuing Biodiversity from an Economic Perspective: A Unified Economic, Ecological and Genetic Approach¹

W. A. Brock² and A. Xepapadeas³

Secuenciación Masiva del Transcriptóma (RNA-seq)

Table 1. Summary statistics of *Lithodes santolla* ovary transcriptome sequencing and assembly.

Raw results	
Number of total raw reads	365,637,100
Number of ovary clean reads	79,878,251
Assembly results	
Number of transcripts	57,881
Average length of transcripts (bp)	855
N50	2,009
Minimum transcripts (bp)	201
Maximum transcripts (bp)	23,210

Muestras de ovario en Solución RNA*later*®

Contigs (%)

Reproduction - Biological Process 351 (4.7 %) configs

LAF

LABORATORIOS NATURALES DE MAGALLANES Y ANTÁRTICA CHILENA.

www.cequa.cl

Gene	
Farnesoic acid O-methyl transferase	
Farnesyl pyrophosphate synthase	
Ecdysteroid receptor	
Retinoid X receptor	
E5 nuclear receptor	
HR3 nuclear receptor	
17-β-hydroxysteroid dehydrogenase type 3	
17- β-hydroxysteroid dehydrogenase type 8	
Membrane progestin receptor y	
Progestin membrane receptor component 1	
JHE-like carboxylesterase 1	
JHE-like carboxylesterase 2	
Cyclooxygenase	
Prostaglanding E synthase	
Prostaglanding D synthase	
Protaglanding E2 receptor	
Dopamine receptor	
Ostamine receptor	
5-hydroxytryptamine receptor	
3-hydroxy-3-methylglutaryl-coenzyme A synthase	ATING 1.788
3-hydroxy-3-methylglutaryl-coenzyme A reductes	
Farnesoic acid O-methyltransferase	
Juvenile hormone epoxide hydrolase 3	
Juvenile hormone epoxide hydrolase 1	
Germinal-center associated nuclear protein MCM3	
DNA replication licensing factor MCM5	
Putative ovarian lipoprotein receptor	
Insulin-like growth factor-binding protein complex	
acid labile subunit isoform X1	

CEQL

FUEGO • PATAGO Y ANTÁRTICA Transcritos involucrados en la regulación del desarrollo gonádico de las hembras.

ABORATORIOS NATURALES DE MAGALLANES Y ANTÁRTICA CHILENA.

Análisis de Redes funcionales y qPCR (Ovario y Hepatopáncreas)

El proceso reproductivo de la centolla

Gametogénesis / Vitelogénesis

MOBILIZACION DE RESERVAS

Mommsen y Walsh, 1988; Osada et al., 2003; Matsumoto et al., 2003; Serrano-Pinto et al., 2005

DESARROLLOS TECNOLÓGICOS GENERADOS

- Genoma mitocondrial completo de centolla, el cual permitió generar la primer plataforma genómica de centolla y el primer "macroarreglo" para uso en la caracterización genética del recurso.
- 2) Primer Transcriptóma asociado al proceso reproductivo de las hembras de centolla, con aplicación directa para el desarrollo del cultivo de centolla.
- 3) Kit trazabilidad genética específico para la pesquería de centolla.
- 4) El primer código de barras de la vida (DNA Barcode of Life), el cual se basa en la identificación de una región de ADN de la centolla que sirve como una etiqueta para la identificación rápida de la especie.

DESARROLLOS TECNOLÓGICOS GENERADOS

4) La primera escala de clasificación del proceso reproductivo (Gametogénesis) e índices de calidad reproductiva de las hembras de centolla, el cual tiene aplicación directa para realizar el seguimiento espacio-temporal y definir con mayor precisión las temporadas de veda del recurso.

5) El primer "banco de genes" geo-referenciado de centolla de toda la región de Magallanes y Antártica chilena.

Tesis de Magister

Martha Guadalupe Barrera García

Análisis de la variación y la estructura genética de la centolla (*Lithodes santolla, Molina, 1782*) en la Región de Magallanes y Antártica chilena, mediante marcadores moleculares

Paulina Mejía Ruiz

Caracterización morfológica, bioquímica y molecular de la vitelogénesis de las hembras del crustáceo subantártico centolla (*Lithodes santolla*)

Santos Rene Serrano Silvas

Caracterización morfológica, bioquímica y molecular de la vitelogénesis de las hembras del crustáceo subantártico centolla (*Lithodes santolla*)

Publicaciones

Acuña-Gómez, E.P., Ibarra-Laclette, E., Schofield-Astorga, D.C., Olave-Solar, C.D., Arcos, F.G. 2017. The complete mitocondrial genome of the southern King crab *Lithodes santolla* (Crustacea: Decapoda: Anomura), using next-generation sequencing. Mitochondrial DNA. Submitted.

Serrano-Silvas, S.R., Acuña-Gómez, E.P., Rodríguez-Jaramillo, C., Schofield-Astorga, D.C., Arcos, F.G. 2017. Ovary development of the southern King crab *Lithodes santolla* (Molina, 1782): Quantitative histological and histochemical characterization. Journal of Crustacean Biology. Submitted.

Acuña-Gómez, E.P., Schofield-Astorga, D.C., Olave-Solar, C.D., Arcos, F.G. 2017. De novo ovary transcriptome analysis of the southern King crab *Lithodes santolla* (Molina, 1782), by RNA-seq: Identification of genes involved of gonadal development. Marine Biotechnology. Submitted.

LABORATORIOS NATURALES DE MAGALLANES Y ANTÁRTICA CHILENA. Publicaciones

Acuña-Gómez, E.P., Barrera-García, M.G., Schofield-Astorga, D.C., González-Trujillo, R., Olave-Solar, C.D., **Arcos, F.G. 2017. Mitochondrial genetic v**ariation of the southern King crab *Lithodes santolla* (Molina, 1782) in the Magellan and Chilean Antarctic Region. Can. J Fish. Sumitted.

Arcos, F.G., Mejía-Ruiz, P., Schofield-Astorga, D.C., González-Trujillo, R., Olave-Solar, C.D., **Acuña-Gómez, E.P. 2017. Microsatellite DNA r**eveals high genetic diversity and gene flow of the southern King crab *Lithodes santolla* (Molina, 1782) in the Magellan and Chilean Antarctic Region. Can. J Fish. Sumitted.

Arcos, F.G., Acuña-Gómez, E.P., Mejía-Ruiz, P., Schofield-Astorga, D.C., González-Trujillo, R., Olave-Solar, C.D., **García de León, F.J. 2017. Integrating genetic and geometricmorphometric** analysis to assess the variation of the southern King crab *Lithodes santolla* (Molina, 1782) in the Magellan and Chilean Antarctic Region. Can. J Fish. Sumitted.

AGRADECIMIENTOS

Financiamiento

NUESTRO EQUIPO DE TRABAJO:

Dra. Eliana Paola Acuña Gómez Dra. G. Fabiola Arcos Ortega Ing. Manuel Sánchez Biol. Mar. Johana Castillo Ruíz Biol. Mar. Guillermo Alvarado Diseñador. Gabriel Quilahuilque Dr. Francisco García de León M. Sc. Carlos Damián Olave Solar Biol. Mar. Carla Mora Otey Biol. Mar. Marco Pinto Ing. Biotec. Diana C. Schofield Astorga Tec. Oscar Mancilla

Estudiantes de Magister:

Paulina Mejía Ruíz Martha Guadalupe Barrera García Santos Rene Serrano Silvas

Tripulación Eliecer IV:

- Heraldo Vera
- Joel Llencun
- Mario Oyarzun
- Claudio Fideli
- Sergio Orellana
- Charles Talbot

LABORATORIOS NATURALES DE MAGALLANES Y ANTÁRTICA CHILENA.

www.cequa.cl

GRACIAS POR SU ATENCION

GENOMA (DIVERSIDAD GENÉTICA) LA BASE DE LA BIODIVERSIDAD

LOCALIDADES DE LAS ZONAS

Zona 1: Islas y canales comprendidos entre la costa sur de las islas Wellingston y Mornigngton, costa oeste de la península Wilcok, isla Esperanza, isla Diego de Almagro y Jorge Montt (Guarello). Dentro de estas zonas se encuentran las localidades de Isla Esperanza (Canal Esteban), Canal Oeste, Isla Cafiero (Canal Oeste), Isla Topar, Punta Cliffs (Canal Ladrillero, Punta Camello (Canal Ladrillero), Punta Pirámide (Canal Ladrillero), Islote Circel, Isla Cruzoe, Río Frío (Paso Indio), Isla Masón, Seno Heinrich y Canal Adalberto.

Zona 2: Incluye canales adyacentes al canal de sarmiento, a la isla Maldonado a la bahía Parker y al sector del grupo Cuarenta Días e isla Conejo. Las localidades que abarcan son, Isla Hannover (Canal Castro), Isla Maldonado (Canal Uribe), Isla Hannover (Canal Castro).

Zona 3: Cubre el sector del seno Otway en la costa occidental de la península de Brunswick y costa sur de la isla Riesco. La localidad presente en esta zona es Caleta Fanny-1.

Zona 4: Abarca el sector de la isla Desolación (canal Abra) y el sector de seno Profundo i la isla Rice Trevor, abarca la localidad Caleta Fanny-2.

Zona 5: Sector oriental del Estrecho de Magallanes incluyendo puerto Zenteno, bahía Santiago y puerto Felipe. Las localidades presentes son; Bahía Laredo.

Zona 6: Incluye el sector de gente grande y Santa María. Localidad de zona Bahía Inútil.

Zona 7: Sector del canal del Beagle (bahía Virginia, bahía Estrella, punta Gusano y Ukika). Localidad muestreada zona 7-01.

Zona 8: Sector del canal Canacus, la península Hardy, el sector de Wollaston y la bahía Windhond, comprende las localidades de Bahía Franklín, y Bahía Orange.

Zona 9: Sector isla Thomas y bahía India. Localidad de Seno año Nuevo y Carolina.

Zona 10: Sector del seno Luisa y del canal Barros Merino y Brazo Inútil. Localidades dentro del muestreo correspondientes a Isla Ramón, Sur de la Isla, Isla Guillermo Obrien, Weste Canal, Canal Ballenero, isla del medio, Jorge.

Zona 11: Abarca islas y canales entre la costa sur de la península Brunswick, seno Agostini, seno Bluff, canal Cockburn, isla Carlos y costa sur de isla Santa Inés. Las localidades presentes destacan Capitán Aracena B. Kempe.

Zona 12: Localidad de Caleta María B. Parry Seno Almirantazgo.

